

**Emotion Recognition In The Wild Challenge and Workshop (EmotiW 2013)** 

#### Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition

Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan, Xilin Chen

Institute of Computing Technology, Chinese Academy of Sciences



# Outline

- Problem
- Related work
- Our Method
- Experiments
- Conclusion



# Outline

- Problem
- Related work
- Our Method
- Experiments
- Conclusion



## Emotion recognition in the wild

- Challenges
  - Large data variations
    - head pose, illumination, partial occlusion, etc.
  - Lack of labeled data
    - Manual annotation is hard as spontaneous expression is ambiguous in the real world.





# Outline

- Problem
- Related work
- Our Method
- Experiments
- Conclusion



## Video-based emotion recognition

- Acoustic information based
  - Time domain and frequency domain
    - e.g. pitch, intensity, pitch contour, Low Short-time Energy Ratio (LSTER), maximum bandwidth, ...
- Vision information based
  - Spatial space and temporal space
    - e.g. Optical flow, 3D descriptor (LBP-TOP, HOG 3D), tracking based (AAM, CLM), probabilistic graph model (HMM, CRF), ...



# Outline

- Problem
- Related work
- Our Method
- Experiments
- Conclusion



- Key issue
  - How to model the emotion video clip?
- Motivation
  - Alleviate the effect of mis-alignment of facial images
  - Encode the data variations among video frames
- Basic idea
  - Inspired by recent progress of image set-based face recognition [1]
  - Treat the video clip as an image set, i.e., a collection of frames
  - Linear subspace for video (image set) modeling

[1] R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance discriminative learning: A natural and efficient approach to image set classification. CVPR, 2012.



• An overview



[2] F. Eyben, M. Wollmer, and B. Schuller. Opensmile: the munich versatile and fast open-source audio feature extractor. ACM MM, 2010.



- Preprocessing
  - Original face alignment using MoPS [3] (provided by organizer)
  - Purification of face images
    - Original aligned face images set:  $X = \{x_1, x_2, ..., x_n\}, x_i \in \mathbb{R}^D$ .
    - PCA projection learned on X by preserving low energy: W.
    - Mean reconstruction error of each image:

$$MeanErr_t = \frac{1}{D} \left| \left| x_t - W^T W x_t \right| \right|^2$$

• Non-face/Badly-aligned face images tend to have large MeanErr<sub>t</sub>.

[3] X. Zhu, and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. CVPR, 2012.



- Preprocessing
  - The distribution of  $MeanErr_t$  on training set in EmotiW2013.



\* Threshold is for filtering out non-face in PCA space.



- Preprocessing
  - An example of 100 samples with largest mean reconstruction error. Most are non-face images or mis-alignment results.





• An overview





- Feature designing
  - Image feature [4]



[4] M. Liu, S. Li, S. Shan, X. Chen. AU-aware Deep Networks for Facial Expression Recognition. FG, 2013.



- Feature designing
  - Video feature
    - Each video clip is a set of images, denoted as S<sub>i</sub> ∈ R<sup>f×n<sub>i</sub></sup>, where f is the dimension of image feature, and n<sub>i</sub> is the number of frames.
    - The video  $S_i$  can be represented as a linear subspace  $P_i$ , s.t.  $S_i S_i^T = P_i \Lambda_i P_i^T$
    - Thus all the video clips can be modeled as a collection of subspaces, which are also the points on Grassmannian manifold.



- Feature designing
  - Video feature
    - An illustration of subspaces on Grassmannian manifold



- Feature designing
  - Video feature
    - The similarity between two points P<sub>i</sub> and P<sub>j</sub> on manifold M can be measured by a linear combination of Grassmannian kernels.
      - Projection kernel[5]:  $k_{ij}^{[proj]} = ||P_i^T P_j||_F^2$ .
      - Canonical correlation kernel<sup>[6]</sup>:  $k_{ij}^{[CC]} = max_{a_p \in span(P_i)}max_{b_q \in span(P_j)}a_p^Tb_q$ .
      - Linear combination:  $k_{ij}^{[com]} = k_{ij}^{[proj]} + \alpha k_{ij}^{[CC]}$ .
    - The kernels of each point (i.e., each video) to all training points serve as its final feature representation for classification.

[5] J. Hamm, D. Lee. Grassmann discriminant analysis: a unifying view on subspace-based learning. ICML, 2008.[6] M. Harandi, C. Sanderson, S. Shirazi, B.C. Lovell. Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. CVPR, 2011.



• An overview





- Classification
  - Partial Least Squares (PLS) for classification [1]
    - Maximize the covariance between observations and class labels



- Classification
  - One-to-Rest PLS
    - Suppose there are c categories and N training samples, we train c
      One-to-Rest PLS classifiers to predict each class simultaneously.
    - Effectively to handle the hard classes, e.g. "Sad" vs. "Disgust"



Classification





- Classification
  - Video-Audio fusion for final test output
    - For a given test video, using the *c* PLS classifiers for video and audio respectively, we obtain two prediction vectors
       *Fit<sup>video</sup>*, *Fit<sup>audio</sup>* ∈ R<sup>c×1</sup>.
    - We conduct a linear fusion at decision level using weighted parameter  $\boldsymbol{\lambda}$

 $Fit^{fusion} = (1 - \lambda) Fit^{video} + \lambda Fit^{audio}$ .

The category corresponding to the maximum value in *Fit<sup>fusion</sup>* is determined to be the recognition result.



# Outline

- Problem
- Related work
- Our Method
- Experiments
- Conclusion



Discussion of Parameters



• Discussion of Parameters



- Discussion of Parameters
  - The dimension of One-to-Rest PLS (audio)



Discussion of Parameters



• Results comparison

| Performance<br>Comparison |       | Audio only         | Video only                                   |                                                 | Audio + Video        |                    |                           |                           |
|---------------------------|-------|--------------------|----------------------------------------------|-------------------------------------------------|----------------------|--------------------|---------------------------|---------------------------|
|                           |       |                    |                                              |                                                 | Original data        |                    |                           | Purified data             |
|                           |       | One-to-Rest<br>PLS | Grassmannian<br>Discriminant<br>Analysis [6] | Grassmannian<br>Kernels +<br>One-to-Rest<br>PLS | Feature-level fusion |                    | Decision-<br>level fusion | Decision-<br>level fusion |
|                           |       |                    |                                              |                                                 | Multi-class<br>LR    | One-to-Rest<br>PLS | One-to-Rest<br>PLS        | One-to-Rest<br>PLS        |
| Ours                      | Val   | 24.49 %            | 30.81%                                       | 32.07%                                          | 22.48%               | 24.24%             | 34.34%                    | 35.86%                    |
|                           | Test* |                    | 24.04%                                       |                                                 |                      | 26.28%             | 33.01%                    | 34.61%                    |
| Baseline                  | Val   | 19.95%             | 27.27%                                       |                                                 | 22.22%               |                    |                           |                           |
|                           | Test  | 22.44%             | 22.75%                                       |                                                 | 27.56%               |                    |                           |                           |

[6] M. Harandi, C. Sanderson, S. Shirazi, B.C. Lovell. Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. CVPR, 2011.



# Outline

- Problem
- Related work
- Our Method
- Experiments
- Conclusion



## Conclusion

- Key points of the current method
  - PCA-based data purifying to filter out mis-alignment faces
  - Linear subspace modeling of video data variations
  - Multiple video features fusion by Grassmannian kernels combination
  - Multi-modality fusion at decision level of video and audio
- Issues to further address
  - Exploration of video temporal dynamics information
  - More sophisticated video modeling
  - More effective fusion at feature level



#### Thank you.

**Question?** 

