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Emotion recognition in the wild 

• Challenges  

– Large data variations 

• head pose, illumination, partial occlusion, etc. 

– Lack of labeled data  

• Manual annotation is hard as spontaneous expression is 

ambiguous in the real world. 
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Video-based emotion recognition 

 

• Acoustic information based 

– Time domain and frequency domain 

• e.g. pitch, intensity, pitch contour, Low Short-time Energy Ratio 

(LSTER), maximum bandwidth, … 

• Vision information based 

– Spatial space and temporal space 

• e.g. Optical flow, 3D descriptor (LBP-TOP, HOG 3D), tracking 

based (AAM, CLM), probabilistic graph model (HMM, CRF), … 
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Our method 

• Key issue 

– How to model the emotion video clip? 

• Motivation 

– Alleviate the effect of mis-alignment of facial images 

– Encode the data variations among video frames 

• Basic idea 

– Inspired by recent progress of image set-based face recognition [1] 

– Treat the video clip as an image set, i.e., a collection of frames 

– Linear subspace for video (image set) modeling 
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[1] R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance discriminative learning: A natural and 

efficient approach to image set classification. CVPR, 2012. 



Classification Feature Designing Preprocessing 

Our method 

• An overview 
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[2] F. Eyben, M. Wollmer, and B. Schuller. Opensmile: the munich versatile and fast open-source 

audio feature extractor. ACM MM, 2010. 

9 



Our method 

• Preprocessing 

– Original face alignment using MoPS [3] (provided by organizer) 

– Purification of face images 

• Original aligned face images set:  𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥𝑖 ∈ 𝑅𝐷. 

• PCA projection learned on 𝑋 by preserving low energy: 𝑊. 

• Mean reconstruction error of each image: 

𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑡 =
1

𝐷
𝑥𝑡 − 𝑊𝑇𝑊𝑥𝑡

2
 

• Non-face/Badly-aligned face images tend to have large 𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑡. 

[3] X. Zhu, and D. Ramanan. Face detection, pose estimation, and landmark localization in the wild. 

CVPR, 2012. 
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Our method 

• Preprocessing 

– The distribution of 𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑡 on training set in EmotiW2013. 
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Our method 

• Preprocessing 

– An example of 100 samples with largest mean reconstruction 

error. Most are non-face images or mis-alignment results. 
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Classification Feature Designing Preprocessing 

Our method 

• An overview 
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Our method 

• Feature designing 

–  Image feature [4] 

 Convolution Filters 

6x6x100 

Filter Maps 
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Max-Pooling 
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Face Image 
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[4] M. Liu, S. Li, S. Shan, X. Chen. AU-aware Deep Networks for Facial Expression Recognition. FG, 2013. 



Our method 

• Feature designing 

–  Video feature 

• Each video clip is a set of images, denoted as 𝑆𝑖 ∈ 𝑅𝑓×𝑛𝑖, 

where 𝑓 is the dimension of image feature, and 𝑛𝑖 is the 

number of frames. 

• The video 𝑆𝑖 can be represented as a linear subspace 𝑃𝑖, s.t. 

𝑆𝑖𝑆𝑖
𝑇 = 𝑃𝑖Λ𝑖𝑃𝑖

𝑇 

• Thus all the video clips can be modeled as a collection of 

subspaces, which are also the points on Grassmannian 

manifold. 
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Our method 

• Feature designing 

–  Video feature 

• An illustration of subspaces on Grassmannian manifold  

 

M 
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Our method 

• Feature designing 

–  Video feature 

• The similarity between two points 𝑷𝒊 and 𝑷𝒋 on manifold 𝑀 can be 

measured by a linear combination of Grassmannian kernels. 

– Projection kernel[5]:  𝑘𝑖𝑗
𝑝𝑟𝑜𝑗

= ||𝑃𝑖
𝑇𝑃𝑗||𝐹

2  . 

– Canonical correlation kernel[6]:  𝑘𝑖𝑗
𝐶𝐶

= 𝑚𝑎𝑥𝑎𝑝∈𝑠𝑝𝑎𝑛 𝑃𝑖
𝑚𝑎𝑥𝑏𝑞∈𝑠𝑝𝑎𝑛 𝑃𝑗

𝑎𝑝
𝑇𝑏𝑞. 

– Linear combination:  𝑘𝑖𝑗
𝑐𝑜𝑚

= 𝑘𝑖𝑗
𝑝𝑟𝑜𝑗

+ α𝑘𝑖𝑗
𝐶𝐶

. 

• The kernels of each point (i.e., each video) to all training points serve as 

its final feature representation for classification. 
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[5] J. Hamm, D. Lee. Grassmann discriminant analysis: a unifying view on subspace-based learning. ICML, 2008. 

[6] M. Harandi, C. Sanderson, S. Shirazi, B.C. Lovell. Graph embedding discriminant analysis on Grassmannian 

manifolds for improved image set matching. CVPR, 2011. 
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Our method 

• Classification 

– Partial Least Squares (PLS) for classification [1] 

• Maximize the covariance between observations and class labels 
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[1] R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance discriminative learning: A natural and 

efficient approach to image set classification. CVPR, 2012. 



• Classification 

– One-to-Rest PLS 

• Suppose there are c categories and N training samples, we train c 

One-to-Rest PLS classifiers to predict each class simultaneously. 

• Effectively to handle the hard classes, e.g. “Sad” vs. “Disgust” 

 

Our method 

…
 

Original training 

label vector 

𝒀 ∈ 𝑹𝑵×𝟏 

Binarize Separate …
 

One-to-Rest training 

label vectors, 

𝒚𝟏, 𝒚𝟐, … , 𝒚𝒄 ∈ 𝑹𝑵×𝟏 

…
 

…
 

…
 

…
 

… 

… 

… 
… 

… 

… 
… 
… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Binary training 

label matrix 

𝒀 ∈ 𝑹𝑵×𝒄 

20 



• Classification 

– One-to-Rest PLS 

• Training and test process 

 

Our method 

One-to-Rest training label 

vectors 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒄 
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Test sample 
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… 
Test result: 𝑭𝒊𝒕 ∈ 𝑹𝒄×𝟏 
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Our method 

• Classification 

– Video-Audio fusion for final test output 

• For a given test video, using the c PLS classifiers for video and 

audio respectively, we obtain two prediction vectors 

𝐹𝑖𝑡𝑣𝑖𝑑𝑒𝑜, 𝐹𝑖𝑡𝑎𝑢𝑑𝑖𝑜 ∈ 𝑅𝑐×1. 

• We conduct a linear fusion at decision level using weighted 

parameter 𝜆 

 𝐹𝑖𝑡𝑓𝑢𝑠𝑖𝑜𝑛 = (1 − 𝜆) 𝐹𝑖𝑡𝑣𝑖𝑑𝑒𝑜+𝜆𝐹𝑖𝑡𝑎𝑢𝑑𝑖𝑜. 

• The category corresponding to the maximum value in 𝑭𝒊𝒕𝒇𝒖𝒔𝒊𝒐𝒏 

is determined to be the recognition result. 
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Train-Val

Val-Train

Experiments 

• Discussion of Parameters 

– The fusion weights of Grassmannian kernels 

24 

Train-Val: @𝜶 = 𝟐−𝟔, 𝟐−𝟓 

Val-Train: @𝜶 = 𝟐−𝟏𝟎 

𝑘𝑖𝑗
𝑐𝑜𝑚

= 𝑘𝑖𝑗
𝑝𝑟𝑜𝑗

+ α𝑘𝑖𝑗
𝐶𝐶

 



Experiments 

• Discussion of Parameters 

– The dimension of One-to-Rest PLS (video) 
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Train-Val: @𝒅𝒊𝒎 = 𝟏𝟎 

Val-Train: @𝒅𝒊𝒎 = 𝟓 



Experiments 

• Discussion of Parameters 

– The dimension of One-to-Rest PLS (audio) 
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Train-Val: @𝒅𝒊𝒎 = 𝟓 

Val-Train: @𝒅𝒊𝒎 = 𝟓 
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Experiments 

• Results comparison 

 

Performance 

Comparison 

Audio only Video only 
Audio + Video 

Original data Purified data 
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level fusion 
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level fusion 

Multi-class 

LR 
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Ours 

Val 24.49 % 30.81% 32.07% 22.48% 24.24% 34.34% 35.86% 

Test* -- 24.04% -- -- 26.28% 33.01% 34.61% 

Baseline 

Val 19.95% 27.27% 22.22% 

Test 22.44% 22.75% 27.56% 
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[6] M. Harandi, C. Sanderson, S. Shirazi, B.C. Lovell. Graph embedding discriminant analysis on Grassmannian 

manifolds for improved image set matching. CVPR, 2011. 
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Conclusion 

• Key points of the current method 

–  PCA-based data purifying to filter out mis-alignment faces 

–  Linear subspace modeling of video data variations 

–  Multiple video features fusion by Grassmannian kernels 

combination 

–  Multi-modality fusion at decision level of video and audio 

• Issues to further address 

–  Exploration of video temporal dynamics information 

–  More sophisticated video modeling 

–  More effective fusion at feature level 

–  … 
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Thank you. 

Question? 


